MakeItFrom.com
Menu (ESC)

EN 1.0116 Steel vs. S30441 Stainless Steel

Both EN 1.0116 steel and S30441 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0116 steel and the bottom bar is S30441 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
45
Fatigue Strength, MPa 140
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 240
400
Tensile Strength: Ultimate (UTS), MPa 380
580
Tensile Strength: Yield (Proof), MPa 200
230

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
940
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.0
18
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.4
Embodied Energy, MJ/kg 19
50
Embodied Water, L/kg 47
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 72
210
Resilience: Unit (Modulus of Resilience), kJ/m3 110
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 13
21
Strength to Weight: Bending, points 15
20
Thermal Diffusivity, mm2/s 13
4.0
Thermal Shock Resistance, points 12
13

Alloy Composition

Carbon (C), % 0 to 0.17
0 to 0.080
Chromium (Cr), % 0 to 0.3
17.5 to 19.5
Copper (Cu), % 0
1.5 to 2.5
Iron (Fe), % 97.1 to 100
62 to 71.7
Manganese (Mn), % 0 to 1.4
0 to 2.0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
8.0 to 10.5
Niobium (Nb), % 0
0.1 to 0.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.035
0 to 0.045
Silicon (Si), % 0 to 0.55
1.0 to 2.0
Sulfur (S), % 0 to 0.035
0 to 0.030
Tungsten (W), % 0
0.2 to 0.8