MakeItFrom.com
Menu (ESC)

EN 1.0143 Steel vs. SAE-AISI 1005 Steel

Both EN 1.0143 steel and SAE-AISI 1005 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0143 steel and the bottom bar is SAE-AISI 1005 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
95
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
23
Fatigue Strength, MPa 180
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 300
210
Tensile Strength: Ultimate (UTS), MPa 470
330
Tensile Strength: Yield (Proof), MPa 250
260

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
53
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
18
Embodied Water, L/kg 47
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
70
Resilience: Unit (Modulus of Resilience), kJ/m3 170
180
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
12
Strength to Weight: Bending, points 17
13
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 15
10

Alloy Composition

Carbon (C), % 0 to 0.21
0 to 0.060
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 97.5 to 100
99.5 to 100
Manganese (Mn), % 0 to 1.6
0 to 0.35
Nitrogen (N), % 0 to 0.014
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Sulfur (S), % 0 to 0.040
0 to 0.050