MakeItFrom.com
Menu (ESC)

EN 1.0145 Steel vs. EN 1.5663 Steel

Both EN 1.0145 steel and EN 1.5663 steel are iron alloys. They have a moderately high 91% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0145 steel and the bottom bar is EN 1.5663 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
230
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 21
20
Fatigue Strength, MPa 180
450
Impact Strength: V-Notched Charpy, J 31
120
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 300
470
Tensile Strength: Ultimate (UTS), MPa 470
750
Tensile Strength: Yield (Proof), MPa 250
660

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
430
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
8.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
9.8

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
7.5
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.4
2.3
Embodied Energy, MJ/kg 18
31
Embodied Water, L/kg 47
63

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 85
150
Resilience: Unit (Modulus of Resilience), kJ/m3 170
1150
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
26
Strength to Weight: Bending, points 17
23
Thermal Shock Resistance, points 15
22

Alloy Composition

Carbon (C), % 0 to 0.21
0 to 0.1
Copper (Cu), % 0 to 0.6
0
Iron (Fe), % 97.5 to 100
88.6 to 91.2
Manganese (Mn), % 0 to 1.6
0.3 to 0.8
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
8.5 to 10
Phosphorus (P), % 0 to 0.035
0 to 0.015
Silicon (Si), % 0
0 to 0.35
Sulfur (S), % 0 to 0.035
0 to 0.0050
Vanadium (V), % 0
0 to 0.010