MakeItFrom.com
Menu (ESC)

EN 1.0213 Steel vs. AWS E320

Both EN 1.0213 steel and AWS E320 are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (13, in this case) are not shown.

For each property being compared, the top bar is EN 1.0213 steel and the bottom bar is AWS E320.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 12 to 25
34
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 320 to 430
620

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Melting Completion (Liquidus), °C 1470
1410
Melting Onset (Solidus), °C 1430
1360
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 12
14

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
38
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.4
6.5
Embodied Energy, MJ/kg 18
91
Embodied Water, L/kg 46
220

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 11 to 15
21
Strength to Weight: Bending, points 13 to 16
20
Thermal Shock Resistance, points 10 to 14
16

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.060 to 0.1
0 to 0.070
Chromium (Cr), % 0
19 to 21
Copper (Cu), % 0
3.0 to 4.0
Iron (Fe), % 99.245 to 99.67
31.8 to 43.5
Manganese (Mn), % 0.25 to 0.45
0.5 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
32 to 36
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 0.6
Sulfur (S), % 0 to 0.025
0 to 0.030