EN 1.0213 Steel vs. EN 1.7703 Steel
Both EN 1.0213 steel and EN 1.7703 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.
For each property being compared, the top bar is EN 1.0213 steel and the bottom bar is EN 1.7703 steel.
Metric UnitsUS Customary Units
Mechanical Properties
Brinell Hardness | 92 to 120 | |
200 to 210 |
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
190 |
Elongation at Break, % | 12 to 25 | |
20 |
Fatigue Strength, MPa | 160 to 240 | |
320 to 340 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
74 |
Shear Strength, MPa | 230 to 270 | |
420 to 430 |
Tensile Strength: Ultimate (UTS), MPa | 320 to 430 | |
670 to 690 |
Tensile Strength: Yield (Proof), MPa | 220 to 330 | |
460 to 500 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
250 |
Maximum Temperature: Mechanical, °C | 400 | |
460 |
Melting Completion (Liquidus), °C | 1470 | |
1470 |
Melting Onset (Solidus), °C | 1430 | |
1430 |
Specific Heat Capacity, J/kg-K | 470 | |
470 |
Thermal Conductivity, W/m-K | 53 | |
39 |
Thermal Expansion, µm/m-K | 12 | |
13 |
Electrical Properties
Electrical Conductivity: Equal Volume, % IACS | 6.9 | |
7.6 |
Electrical Conductivity: Equal Weight (Specific), % IACS | 7.9 | |
8.7 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
4.2 |
Density, g/cm3 | 7.9 | |
7.9 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
2.5 |
Embodied Energy, MJ/kg | 18 | |
35 |
Embodied Water, L/kg | 46 | |
61 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 33 to 98 | |
120 to 130 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 120 to 300 | |
570 to 650 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
24 |
Strength to Weight: Axial, points | 11 to 15 | |
24 |
Strength to Weight: Bending, points | 13 to 16 | |
22 |
Thermal Diffusivity, mm2/s | 14 | |
11 |
Thermal Shock Resistance, points | 10 to 14 | |
19 to 20 |
Alloy Composition
Aluminum (Al), % | 0.020 to 0.060 | |
0 |
Carbon (C), % | 0.060 to 0.1 | |
0.11 to 0.15 |
Chromium (Cr), % | 0 | |
2.0 to 2.5 |
Copper (Cu), % | 0 | |
0 to 0.2 |
Iron (Fe), % | 99.245 to 99.67 | |
94.6 to 96.4 |
Manganese (Mn), % | 0.25 to 0.45 | |
0.3 to 0.6 |
Molybdenum (Mo), % | 0 | |
0.9 to 1.1 |
Nickel (Ni), % | 0 | |
0 to 0.25 |
Niobium (Nb), % | 0 | |
0 to 0.070 |
Nitrogen (N), % | 0 | |
0 to 0.012 |
Phosphorus (P), % | 0 to 0.020 | |
0 to 0.015 |
Silicon (Si), % | 0 to 0.1 | |
0 to 0.1 |
Sulfur (S), % | 0 to 0.025 | |
0 to 0.0050 |
Titanium (Ti), % | 0 | |
0 to 0.030 |
Vanadium (V), % | 0 | |
0.25 to 0.35 |