MakeItFrom.com
Menu (ESC)

EN 1.0213 Steel vs. EN 1.7767 Steel

Both EN 1.0213 steel and EN 1.7767 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0213 steel and the bottom bar is EN 1.7767 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 92 to 120
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 25
20
Fatigue Strength, MPa 160 to 240
320 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 230 to 270
420 to 430
Tensile Strength: Ultimate (UTS), MPa 320 to 430
670 to 690
Tensile Strength: Yield (Proof), MPa 220 to 330
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
480
Melting Completion (Liquidus), °C 1470
1470
Melting Onset (Solidus), °C 1430
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
7.7
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
4.5
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 18
33
Embodied Water, L/kg 46
64

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 33 to 98
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 300
570 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 11 to 15
24
Strength to Weight: Bending, points 13 to 16
22
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 10 to 14
19 to 20

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.060 to 0.1
0.1 to 0.15
Chromium (Cr), % 0
2.8 to 3.3
Copper (Cu), % 0
0 to 0.25
Iron (Fe), % 99.245 to 99.67
93.8 to 95.8
Manganese (Mn), % 0.25 to 0.45
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.020
0 to 0.015
Silicon (Si), % 0 to 0.1
0 to 0.15
Sulfur (S), % 0 to 0.025
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.2 to 0.3