MakeItFrom.com
Menu (ESC)

EN 1.0214 Steel vs. CC493K Bronze

EN 1.0214 steel belongs to the iron alloys classification, while CC493K bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0214 steel and the bottom bar is CC493K bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
74
Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 12 to 31
14
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 330 to 460
270
Tensile Strength: Yield (Proof), MPa 210 to 360
140

Thermal Properties

Latent Heat of Fusion, J/g 250
180
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1470
960
Melting Onset (Solidus), °C 1420
880
Specific Heat Capacity, J/kg-K 470
360
Thermal Conductivity, W/m-K 53
61
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
12
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
12

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
32
Density, g/cm3 7.9
8.9
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
53
Embodied Water, L/kg 46
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34 to 130
33
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 340
89
Stiffness to Weight: Axial, points 13
6.5
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 12 to 16
8.6
Strength to Weight: Bending, points 14 to 17
11
Thermal Diffusivity, mm2/s 14
19
Thermal Shock Resistance, points 11 to 14
10

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.010
Antimony (Sb), % 0
0 to 0.3
Carbon (C), % 0.080 to 0.12
0
Copper (Cu), % 0
79 to 86
Iron (Fe), % 99.17 to 99.6
0 to 0.2
Lead (Pb), % 0
5.0 to 8.0
Manganese (Mn), % 0.3 to 0.5
0
Nickel (Ni), % 0
0 to 2.0
Phosphorus (P), % 0 to 0.025
0 to 0.1
Silicon (Si), % 0 to 0.1
0 to 0.010
Sulfur (S), % 0 to 0.025
0 to 0.1
Tin (Sn), % 0
5.2 to 8.0
Zinc (Zn), % 0
2.0 to 5.0