MakeItFrom.com
Menu (ESC)

EN 1.0214 Steel vs. Grade 36 Titanium

EN 1.0214 steel belongs to the iron alloys classification, while grade 36 titanium belongs to the titanium alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.0214 steel and the bottom bar is grade 36 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 31
11
Fatigue Strength, MPa 160 to 250
300
Poisson's Ratio 0.29
0.36
Shear Modulus, GPa 73
39
Shear Strength, MPa 250 to 290
320
Tensile Strength: Ultimate (UTS), MPa 330 to 460
530
Tensile Strength: Yield (Proof), MPa 210 to 360
520

Thermal Properties

Latent Heat of Fusion, J/g 250
370
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1470
2020
Melting Onset (Solidus), °C 1420
1950
Specific Heat Capacity, J/kg-K 470
420
Thermal Expansion, µm/m-K 12
8.1

Otherwise Unclassified Properties

Density, g/cm3 7.9
6.3
Embodied Carbon, kg CO2/kg material 1.4
58
Embodied Energy, MJ/kg 18
920
Embodied Water, L/kg 46
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34 to 130
59
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 340
1260
Stiffness to Weight: Axial, points 13
9.3
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 12 to 16
23
Strength to Weight: Bending, points 14 to 17
23
Thermal Shock Resistance, points 11 to 14
45

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Hydrogen (H), % 0
0 to 0.0035
Iron (Fe), % 99.17 to 99.6
0 to 0.030
Manganese (Mn), % 0.3 to 0.5
0
Niobium (Nb), % 0
42 to 47
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.16
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
52.3 to 58
Residuals, % 0
0 to 0.4