MakeItFrom.com
Menu (ESC)

EN 1.0214 Steel vs. S40910 Stainless Steel

Both EN 1.0214 steel and S40910 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0214 steel and the bottom bar is S40910 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 97 to 130
160
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 31
23
Fatigue Strength, MPa 160 to 250
130
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
75
Shear Strength, MPa 250 to 290
270
Tensile Strength: Ultimate (UTS), MPa 330 to 460
430
Tensile Strength: Yield (Proof), MPa 210 to 360
190

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
710
Melting Completion (Liquidus), °C 1470
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 53
26
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
7.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.0
Embodied Energy, MJ/kg 18
28
Embodied Water, L/kg 46
94

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 34 to 130
80
Resilience: Unit (Modulus of Resilience), kJ/m3 120 to 340
94
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 12 to 16
16
Strength to Weight: Bending, points 14 to 17
16
Thermal Diffusivity, mm2/s 14
6.9
Thermal Shock Resistance, points 11 to 14
16

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.080 to 0.12
0 to 0.030
Chromium (Cr), % 0
10.5 to 11.7
Iron (Fe), % 99.17 to 99.6
85 to 89.5
Manganese (Mn), % 0.3 to 0.5
0 to 1.0
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.17
Nitrogen (N), % 0
0 to 0.030
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.1
0 to 1.0
Sulfur (S), % 0 to 0.025
0 to 0.020
Titanium (Ti), % 0
0 to 0.5