MakeItFrom.com
Menu (ESC)

EN 1.0215 Steel vs. SAE-AISI 50B60 Steel

Both EN 1.0215 steel and SAE-AISI 50B60 steel are iron alloys. They have a very high 98% of their average alloy composition in common.

For each property being compared, the top bar is EN 1.0215 steel and the bottom bar is SAE-AISI 50B60 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100
180 to 190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
12 to 20
Fatigue Strength, MPa 180
240 to 330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
72
Shear Strength, MPa 230
380
Tensile Strength: Ultimate (UTS), MPa 350
610 to 630
Tensile Strength: Yield (Proof), MPa 250
350 to 530

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
45
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.0
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 45
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 79
71 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 160
330 to 750
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13
22 to 23
Strength to Weight: Bending, points 14
20 to 21
Thermal Diffusivity, mm2/s 14
12
Thermal Shock Resistance, points 11
20

Alloy Composition

Boron (B), % 0
0.00050 to 0.0030
Carbon (C), % 0 to 0.14
0.56 to 0.64
Chromium (Cr), % 0
0.4 to 0.6
Iron (Fe), % 98.7 to 100
97.3 to 98.1
Manganese (Mn), % 0 to 0.7
0.75 to 1.0
Phosphorus (P), % 0 to 0.045
0 to 0.035
Silicon (Si), % 0 to 0.35
0.15 to 0.35
Sulfur (S), % 0 to 0.045
0 to 0.040