MakeItFrom.com
Menu (ESC)

EN 1.0220 Steel vs. EN 1.4825 Stainless Steel

Both EN 1.0220 steel and EN 1.4825 stainless steel are iron alloys. They have 71% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0220 steel and the bottom bar is EN 1.4825 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
150
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
17
Fatigue Strength, MPa 210
160
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Tensile Strength: Ultimate (UTS), MPa 390
510
Tensile Strength: Yield (Proof), MPa 290
260

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
900
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1370
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 51
15
Thermal Expansion, µm/m-K 12
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
15
Density, g/cm3 7.9
7.7
Embodied Carbon, kg CO2/kg material 1.4
3.1
Embodied Energy, MJ/kg 18
43
Embodied Water, L/kg 46
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 80
72
Resilience: Unit (Modulus of Resilience), kJ/m3 230
170
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 14
18
Strength to Weight: Bending, points 15
18
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 12
12

Alloy Composition

Carbon (C), % 0 to 0.16
0.15 to 0.35
Chromium (Cr), % 0
17 to 19
Iron (Fe), % 98.2 to 100
65.6 to 74.4
Manganese (Mn), % 0 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0
8.0 to 10
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.35
0.5 to 2.5
Sulfur (S), % 0 to 0.045
0 to 0.030