MakeItFrom.com
Menu (ESC)

EN 1.0225 Steel vs. EN 1.7703 Steel

Both EN 1.0225 steel and EN 1.7703 steel are iron alloys. They have a very high 96% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0225 steel and the bottom bar is EN 1.7703 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130 to 140
200 to 210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 6.7 to 24
20
Fatigue Strength, MPa 170 to 220
320 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 280 to 290
420 to 430
Tensile Strength: Ultimate (UTS), MPa 440 to 500
670 to 690
Tensile Strength: Yield (Proof), MPa 230 to 380
460 to 500

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
2.5
Embodied Energy, MJ/kg 18
35
Embodied Water, L/kg 46
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 31 to 95
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 140 to 390
570 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16 to 18
24
Strength to Weight: Bending, points 16 to 18
22
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 14 to 16
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.21
0.11 to 0.15
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 98 to 100
94.6 to 96.4
Manganese (Mn), % 0 to 1.4
0.3 to 0.6
Molybdenum (Mo), % 0
0.9 to 1.1
Nickel (Ni), % 0
0 to 0.25
Niobium (Nb), % 0
0 to 0.070
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0 to 0.045
0 to 0.015
Silicon (Si), % 0 to 0.35
0 to 0.1
Sulfur (S), % 0 to 0.045
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0.25 to 0.35