EN 1.0225 Steel vs. Grade CW2M Nickel
EN 1.0225 steel belongs to the iron alloys classification, while grade CW2M nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.
For each property being compared, the top bar is EN 1.0225 steel and the bottom bar is grade CW2M nickel.
Metric UnitsUS Customary Units
Mechanical Properties
Elastic (Young's, Tensile) Modulus, GPa | 190 | |
210 |
Elongation at Break, % | 6.7 to 24 | |
23 |
Fatigue Strength, MPa | 170 to 220 | |
190 |
Poisson's Ratio | 0.29 | |
0.29 |
Shear Modulus, GPa | 73 | |
83 |
Tensile Strength: Ultimate (UTS), MPa | 440 to 500 | |
560 |
Tensile Strength: Yield (Proof), MPa | 230 to 380 | |
310 |
Thermal Properties
Latent Heat of Fusion, J/g | 250 | |
330 |
Maximum Temperature: Mechanical, °C | 400 | |
960 |
Melting Completion (Liquidus), °C | 1460 | |
1520 |
Melting Onset (Solidus), °C | 1420 | |
1460 |
Specific Heat Capacity, J/kg-K | 470 | |
430 |
Thermal Expansion, µm/m-K | 12 | |
12 |
Otherwise Unclassified Properties
Base Metal Price, % relative | 1.8 | |
70 |
Density, g/cm3 | 7.8 | |
8.8 |
Embodied Carbon, kg CO2/kg material | 1.4 | |
12 |
Embodied Energy, MJ/kg | 18 | |
170 |
Embodied Water, L/kg | 46 | |
290 |
Common Calculations
Resilience: Ultimate (Unit Rupture Work), MJ/m3 | 31 to 95 | |
110 |
Resilience: Unit (Modulus of Resilience), kJ/m3 | 140 to 390 | |
220 |
Stiffness to Weight: Axial, points | 13 | |
13 |
Stiffness to Weight: Bending, points | 24 | |
23 |
Strength to Weight: Axial, points | 16 to 18 | |
18 |
Strength to Weight: Bending, points | 16 to 18 | |
17 |
Thermal Shock Resistance, points | 14 to 16 | |
16 |
Alloy Composition
Carbon (C), % | 0 to 0.21 | |
0 to 0.020 |
Chromium (Cr), % | 0 | |
15 to 17.5 |
Iron (Fe), % | 98 to 100 | |
0 to 2.0 |
Manganese (Mn), % | 0 to 1.4 | |
0 to 1.0 |
Molybdenum (Mo), % | 0 | |
15 to 17.5 |
Nickel (Ni), % | 0 | |
60.1 to 70 |
Phosphorus (P), % | 0 to 0.045 | |
0 to 0.030 |
Silicon (Si), % | 0 to 0.35 | |
0 to 0.8 |
Sulfur (S), % | 0 to 0.045 | |
0 to 0.030 |
Tungsten (W), % | 0 | |
0 to 1.0 |