MakeItFrom.com
Menu (ESC)

EN 1.0234 Steel vs. C86300 Bronze

EN 1.0234 steel belongs to the iron alloys classification, while C86300 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0234 steel and the bottom bar is C86300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 100 to 140
250
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 29
14
Poisson's Ratio 0.29
0.32
Shear Modulus, GPa 73
42
Tensile Strength: Ultimate (UTS), MPa 350 to 480
850
Tensile Strength: Yield (Proof), MPa 220 to 410
480

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1420
890
Specific Heat Capacity, J/kg-K 470
420
Thermal Conductivity, W/m-K 53
35
Thermal Expansion, µm/m-K 12
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
23
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
3.0
Embodied Energy, MJ/kg 18
51
Embodied Water, L/kg 46
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 36 to 130
100
Resilience: Unit (Modulus of Resilience), kJ/m3 130 to 440
1030
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 12 to 17
30
Strength to Weight: Bending, points 14 to 17
25
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 11 to 15
28

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
5.0 to 7.5
Carbon (C), % 0.13 to 0.17
0
Copper (Cu), % 0
60 to 66
Iron (Fe), % 99.02 to 99.5
2.0 to 4.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0.35 to 0.6
2.5 to 5.0
Nickel (Ni), % 0
0 to 1.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
0 to 0.2
Zinc (Zn), % 0
22 to 28
Residuals, % 0
0 to 1.0