MakeItFrom.com
Menu (ESC)

EN 1.0236 Steel vs. ASTM A321 Carbon Steel

Both EN 1.0236 steel and ASTM A321 carbon steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0236 steel and the bottom bar is ASTM A321 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
21
Fatigue Strength, MPa 230
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 310
420
Tensile Strength: Ultimate (UTS), MPa 490
670
Tensile Strength: Yield (Proof), MPa 330
390

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
1.8
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
18
Embodied Water, L/kg 46
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
120
Resilience: Unit (Modulus of Resilience), kJ/m3 290
400
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 16
21

Alloy Composition

Carbon (C), % 0 to 0.21
0 to 0.55
Iron (Fe), % 97.9 to 100
98.1 to 99.25
Manganese (Mn), % 0 to 1.5
0.6 to 0.9
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.3
0.15 to 0.35
Sulfur (S), % 0 to 0.035
0 to 0.050