MakeItFrom.com
Menu (ESC)

EN 1.0236 Steel vs. EN 1.4742 Stainless Steel

Both EN 1.0236 steel and EN 1.4742 stainless steel are iron alloys. They have 80% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0236 steel and the bottom bar is EN 1.4742 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
180
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
17
Fatigue Strength, MPa 230
180
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
77
Shear Strength, MPa 310
370
Tensile Strength: Ultimate (UTS), MPa 490
600
Tensile Strength: Yield (Proof), MPa 330
300

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1460
1420
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
490
Thermal Conductivity, W/m-K 52
19
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
2.2

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
9.0
Density, g/cm3 7.9
7.6
Embodied Carbon, kg CO2/kg material 1.4
2.2
Embodied Energy, MJ/kg 18
32
Embodied Water, L/kg 46
130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 99
84
Resilience: Unit (Modulus of Resilience), kJ/m3 290
230
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 18
21
Thermal Diffusivity, mm2/s 14
5.1
Thermal Shock Resistance, points 16
21

Alloy Composition

Aluminum (Al), % 0
0.7 to 1.2
Carbon (C), % 0 to 0.21
0 to 0.12
Chromium (Cr), % 0
17 to 19
Iron (Fe), % 97.9 to 100
77.2 to 81.6
Manganese (Mn), % 0 to 1.5
0 to 1.0
Phosphorus (P), % 0 to 0.030
0 to 0.040
Silicon (Si), % 0 to 0.3
0.7 to 1.4
Sulfur (S), % 0 to 0.035
0 to 0.015