MakeItFrom.com
Menu (ESC)

EN 1.0255 Steel vs. ASTM A356 Grade 8

Both EN 1.0255 steel and ASTM A356 grade 8 are iron alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0255 steel and the bottom bar is ASTM A356 grade 8.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
21
Fatigue Strength, MPa 180
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 430
630
Tensile Strength: Yield (Proof), MPa 250
390

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
440
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
38
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
3.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.0
Embodied Energy, MJ/kg 19
26
Embodied Water, L/kg 49
55

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 160
390
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15
22
Strength to Weight: Bending, points 16
21
Thermal Diffusivity, mm2/s 11
10
Thermal Shock Resistance, points 14
18

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.16
0 to 0.2
Chromium (Cr), % 0 to 0.3
1.0 to 1.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.1 to 99.98
95.4 to 97.4
Manganese (Mn), % 0 to 1.2
0.5 to 0.9
Molybdenum (Mo), % 0 to 0.080
0.9 to 1.2
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.035
Silicon (Si), % 0 to 0.35
0.2 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.030
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0.050 to 0.15