MakeItFrom.com
Menu (ESC)

EN 1.0255 Steel vs. EN 1.4980 Stainless Steel

Both EN 1.0255 steel and EN 1.4980 stainless steel are iron alloys. They have 55% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0255 steel and the bottom bar is EN 1.4980 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
17
Fatigue Strength, MPa 180
410
Impact Strength: V-Notched Charpy, J 38
57
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
75
Shear Strength, MPa 280
630
Tensile Strength: Ultimate (UTS), MPa 430
1030
Tensile Strength: Yield (Proof), MPa 250
680

Thermal Properties

Latent Heat of Fusion, J/g 250
300
Maximum Temperature: Mechanical, °C 400
920
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
13
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
26
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
6.0
Embodied Energy, MJ/kg 19
87
Embodied Water, L/kg 49
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
150
Resilience: Unit (Modulus of Resilience), kJ/m3 160
1180
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15
36
Strength to Weight: Bending, points 16
28
Thermal Diffusivity, mm2/s 11
3.5
Thermal Shock Resistance, points 14
22

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0 to 0.35
Boron (B), % 0
0.0030 to 0.010
Carbon (C), % 0 to 0.16
0.030 to 0.080
Chromium (Cr), % 0 to 0.3
13.5 to 16
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.1 to 99.98
49.2 to 58.5
Manganese (Mn), % 0 to 1.2
1.0 to 2.0
Molybdenum (Mo), % 0 to 0.080
1.0 to 1.5
Nickel (Ni), % 0 to 0.3
24 to 27
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.35
0 to 1.0
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.040
1.9 to 2.3
Vanadium (V), % 0 to 0.020
0.1 to 0.5