MakeItFrom.com
Menu (ESC)

EN 1.0255 Steel vs. SAE-AISI 1040 Steel

Both EN 1.0255 steel and SAE-AISI 1040 steel are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0255 steel and the bottom bar is SAE-AISI 1040 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
13 to 20
Fatigue Strength, MPa 180
220 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 280
350 to 390
Tensile Strength: Ultimate (UTS), MPa 430
570 to 640
Tensile Strength: Yield (Proof), MPa 250
320 to 530

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 40
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.7
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.8
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 49
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
79 to 96
Resilience: Unit (Modulus of Resilience), kJ/m3 160
270 to 760
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15
20 to 23
Strength to Weight: Bending, points 16
19 to 21
Thermal Diffusivity, mm2/s 11
14
Thermal Shock Resistance, points 14
18 to 20

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.16
0.37 to 0.44
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.1 to 99.98
98.6 to 99.03
Manganese (Mn), % 0 to 1.2
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.015
0 to 0.050
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0