MakeItFrom.com
Menu (ESC)

EN 1.0255 Steel vs. S33228 Stainless Steel

Both EN 1.0255 steel and S33228 stainless steel are iron alloys. They have 40% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.0255 steel and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 27
34
Fatigue Strength, MPa 180
170
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
79
Shear Strength, MPa 280
380
Tensile Strength: Ultimate (UTS), MPa 430
570
Tensile Strength: Yield (Proof), MPa 250
210

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
1100
Melting Completion (Liquidus), °C 1460
1410
Melting Onset (Solidus), °C 1420
1360
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
37
Density, g/cm3 7.8
8.0
Embodied Carbon, kg CO2/kg material 1.5
6.2
Embodied Energy, MJ/kg 19
89
Embodied Water, L/kg 49
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 100
150
Resilience: Unit (Modulus of Resilience), kJ/m3 160
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15
20
Strength to Weight: Bending, points 16
19
Thermal Shock Resistance, points 14
13

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0 to 0.025
Carbon (C), % 0 to 0.16
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0 to 0.3
26 to 28
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 94.1 to 99.98
36.5 to 42.3
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
31 to 33
Niobium (Nb), % 0 to 0.010
0.6 to 1.0
Phosphorus (P), % 0 to 0.025
0 to 0.020
Silicon (Si), % 0 to 0.35
0 to 0.3
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0