MakeItFrom.com
Menu (ESC)

EN 1.0258 Steel vs. C87400 Brass

EN 1.0258 steel belongs to the iron alloys classification, while C87400 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0258 steel and the bottom bar is C87400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 23
21
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 490
390
Tensile Strength: Yield (Proof), MPa 290
160

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1460
920
Melting Onset (Solidus), °C 1420
820
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 49
28
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
7.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
27
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.5
2.7
Embodied Energy, MJ/kg 19
44
Embodied Water, L/kg 47
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
65
Resilience: Unit (Modulus of Resilience), kJ/m3 220
120
Stiffness to Weight: Axial, points 13
7.4
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 17
13
Strength to Weight: Bending, points 18
14
Thermal Diffusivity, mm2/s 13
8.3
Thermal Shock Resistance, points 16
14

Alloy Composition

Aluminum (Al), % 0
0 to 0.8
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
79 to 85.5
Iron (Fe), % 96.9 to 100
0
Lead (Pb), % 0
0 to 1.0
Manganese (Mn), % 0 to 1.4
0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
2.5 to 4.0
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.8