MakeItFrom.com
Menu (ESC)

EN 1.0258 Steel vs. S31727 Stainless Steel

Both EN 1.0258 steel and S31727 stainless steel are iron alloys. They have 59% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is EN 1.0258 steel and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
190
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 23
40
Fatigue Strength, MPa 200
240
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
78
Shear Strength, MPa 310
430
Tensile Strength: Ultimate (UTS), MPa 490
630
Tensile Strength: Yield (Proof), MPa 290
270

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1010
Melting Completion (Liquidus), °C 1460
1440
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
470
Thermal Expansion, µm/m-K 12
16

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
24
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 1.5
4.7
Embodied Energy, MJ/kg 19
64
Embodied Water, L/kg 47
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
200
Resilience: Unit (Modulus of Resilience), kJ/m3 220
190
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
22
Strength to Weight: Bending, points 18
20
Thermal Shock Resistance, points 16
14

Alloy Composition

Carbon (C), % 0 to 0.2
0 to 0.030
Chromium (Cr), % 0 to 0.3
17.5 to 19
Copper (Cu), % 0 to 0.3
2.8 to 4.0
Iron (Fe), % 96.9 to 100
53.7 to 61.3
Manganese (Mn), % 0 to 1.4
0 to 1.0
Molybdenum (Mo), % 0 to 0.080
3.8 to 4.5
Nickel (Ni), % 0 to 0.3
14.5 to 16.5
Niobium (Nb), % 0 to 0.010
0
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0