MakeItFrom.com
Menu (ESC)

EN 1.0259 Steel vs. ASTM A182 Grade F22V

Both EN 1.0259 steel and ASTM A182 grade F22V are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0259 steel and the bottom bar is ASTM A182 grade F22V.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
210
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
21
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
74
Shear Strength, MPa 310
420
Tensile Strength: Ultimate (UTS), MPa 490
670
Tensile Strength: Yield (Proof), MPa 280
460

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
460
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
39
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
4.2
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
2.5
Embodied Energy, MJ/kg 19
35
Embodied Water, L/kg 49
61

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
120
Resilience: Unit (Modulus of Resilience), kJ/m3 210
570
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Boron (B), % 0
0 to 0.0020
Calcium (Ca), % 0
0 to 0.015
Carbon (C), % 0 to 0.2
0.11 to 0.15
Chromium (Cr), % 0 to 0.3
2.0 to 2.5
Copper (Cu), % 0 to 0.3
0 to 0.2
Iron (Fe), % 96.7 to 99.98
94.6 to 96.4
Manganese (Mn), % 0 to 1.4
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.080
0.9 to 1.1
Nickel (Ni), % 0 to 0.3
0 to 0.25
Niobium (Nb), % 0 to 0.010
0 to 0.070
Phosphorus (P), % 0 to 0.025
0 to 0.015
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0 to 0.015
0 to 0.010
Titanium (Ti), % 0 to 0.040
0 to 0.030
Vanadium (V), % 0 to 0.020
0.25 to 0.35