MakeItFrom.com
Menu (ESC)

EN 1.0259 Steel vs. EN 1.4516 Stainless Steel

Both EN 1.0259 steel and EN 1.4516 stainless steel are iron alloys. They have 87% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0259 steel and the bottom bar is EN 1.4516 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
23
Fatigue Strength, MPa 200
210
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 310
350
Tensile Strength: Ultimate (UTS), MPa 490
550
Tensile Strength: Yield (Proof), MPa 280
320

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
720
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
30
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
7.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.0
Embodied Energy, MJ/kg 19
28
Embodied Water, L/kg 49
97

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 95
110
Resilience: Unit (Modulus of Resilience), kJ/m3 210
260
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 17
20
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 13
8.1
Thermal Shock Resistance, points 15
20

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.2
0 to 0.080
Chromium (Cr), % 0 to 0.3
10.5 to 12.5
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.7 to 99.98
83.3 to 89
Manganese (Mn), % 0 to 1.4
0 to 1.5
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0.5 to 1.5
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.015
Titanium (Ti), % 0 to 0.040
0.050 to 0.35
Vanadium (V), % 0 to 0.020
0