MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. 6018 Aluminum

EN 1.0303 steel belongs to the iron alloys classification, while 6018 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is 6018 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 12 to 25
9.0 to 9.1
Fatigue Strength, MPa 150 to 230
85 to 89
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 220 to 260
170 to 180
Tensile Strength: Ultimate (UTS), MPa 290 to 410
290 to 300
Tensile Strength: Yield (Proof), MPa 200 to 320
220 to 230

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1470
640
Melting Onset (Solidus), °C 1430
570
Specific Heat Capacity, J/kg-K 470
890
Thermal Conductivity, W/m-K 53
170
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
44
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
10
Density, g/cm3 7.9
2.9
Embodied Carbon, kg CO2/kg material 1.4
8.2
Embodied Energy, MJ/kg 18
150
Embodied Water, L/kg 46
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 94
24 to 25
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 270
360 to 380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
48
Strength to Weight: Axial, points 10 to 15
28 to 29
Strength to Weight: Bending, points 12 to 16
34 to 35
Thermal Diffusivity, mm2/s 14
65
Thermal Shock Resistance, points 9.2 to 13
13

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
93.1 to 97.8
Bismuth (Bi), % 0
0.4 to 0.7
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
0.15 to 0.4
Iron (Fe), % 99.335 to 99.71
0 to 0.7
Lead (Pb), % 0
0.4 to 1.2
Magnesium (Mg), % 0
0.6 to 1.2
Manganese (Mn), % 0.25 to 0.4
0.3 to 0.8
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.1
0.5 to 1.2
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.3
Residuals, % 0
0 to 0.15