MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. EN 1.3515 Steel

Both EN 1.0303 steel and EN 1.3515 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is EN 1.3515 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84 to 120
150 to 220
Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 290 to 410
500 to 1460

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
410
Melting Completion (Liquidus), °C 1470
1460
Melting Onset (Solidus), °C 1430
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 53
46
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.1
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 18
19
Embodied Water, L/kg 46
49

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 10 to 15
18 to 52
Strength to Weight: Bending, points 12 to 16
18 to 36
Thermal Diffusivity, mm2/s 14
12
Thermal Shock Resistance, points 9.2 to 13
15 to 43

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.050
Carbon (C), % 0.020 to 0.060
0.17 to 0.23
Chromium (Cr), % 0
0.4 to 0.75
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 99.335 to 99.71
97.3 to 99
Manganese (Mn), % 0.25 to 0.4
0.65 to 1.1
Oxygen (O), % 0
0 to 0.0020
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.4
Sulfur (S), % 0 to 0.025
0 to 0.030

Comparable Variants