MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. Grade CZ100 Nickel

EN 1.0303 steel belongs to the iron alloys classification, while grade CZ100 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is grade CZ100 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
180
Elongation at Break, % 12 to 25
11
Fatigue Strength, MPa 150 to 230
68
Poisson's Ratio 0.29
0.31
Shear Modulus, GPa 73
69
Tensile Strength: Ultimate (UTS), MPa 290 to 410
390
Tensile Strength: Yield (Proof), MPa 200 to 320
140

Thermal Properties

Latent Heat of Fusion, J/g 250
310
Maximum Temperature: Mechanical, °C 400
900
Melting Completion (Liquidus), °C 1470
1350
Melting Onset (Solidus), °C 1430
1300
Specific Heat Capacity, J/kg-K 470
450
Thermal Conductivity, W/m-K 53
73
Thermal Expansion, µm/m-K 12
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
19
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
19

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
60
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.4
10
Embodied Energy, MJ/kg 18
140
Embodied Water, L/kg 46
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 94
35
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 270
54
Stiffness to Weight: Axial, points 13
12
Stiffness to Weight: Bending, points 24
22
Strength to Weight: Axial, points 10 to 15
12
Strength to Weight: Bending, points 12 to 16
14
Thermal Diffusivity, mm2/s 14
19
Thermal Shock Resistance, points 9.2 to 13
14

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.020 to 0.060
0 to 1.0
Copper (Cu), % 0
0 to 1.3
Iron (Fe), % 99.335 to 99.71
0 to 3.0
Manganese (Mn), % 0.25 to 0.4
0 to 1.5
Nickel (Ni), % 0
95 to 100
Phosphorus (P), % 0 to 0.020
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 2.0
Sulfur (S), % 0 to 0.025
0 to 0.030