MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. Titanium 6-7

EN 1.0303 steel belongs to the iron alloys classification, while titanium 6-7 belongs to the titanium alloys. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is titanium 6-7.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 25
11
Fatigue Strength, MPa 150 to 230
530
Poisson's Ratio 0.29
0.33
Reduction in Area, % 75 to 86
29
Shear Modulus, GPa 73
45
Shear Strength, MPa 220 to 260
610
Tensile Strength: Ultimate (UTS), MPa 290 to 410
1020
Tensile Strength: Yield (Proof), MPa 200 to 320
900

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
300
Melting Completion (Liquidus), °C 1470
1700
Melting Onset (Solidus), °C 1430
1650
Specific Heat Capacity, J/kg-K 470
520
Thermal Expansion, µm/m-K 12
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
75
Density, g/cm3 7.9
5.1
Embodied Carbon, kg CO2/kg material 1.4
34
Embodied Energy, MJ/kg 18
540
Embodied Water, L/kg 46
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 94
110
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 270
3460
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
32
Strength to Weight: Axial, points 10 to 15
56
Strength to Weight: Bending, points 12 to 16
44
Thermal Shock Resistance, points 9.2 to 13
66

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
5.5 to 6.5
Carbon (C), % 0.020 to 0.060
0 to 0.080
Hydrogen (H), % 0
0 to 0.0090
Iron (Fe), % 99.335 to 99.71
0 to 0.25
Manganese (Mn), % 0.25 to 0.4
0
Molybdenum (Mo), % 0
6.5 to 7.5
Niobium (Nb), % 0
6.5 to 7.5
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.025
0
Tantalum (Ta), % 0
0 to 0.5
Titanium (Ti), % 0
84.9 to 88