MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. C65400 Bronze

EN 1.0303 steel belongs to the iron alloys classification, while C65400 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is C65400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 25
2.6 to 47
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 220 to 260
350 to 530
Tensile Strength: Ultimate (UTS), MPa 290 to 410
500 to 1060
Tensile Strength: Yield (Proof), MPa 200 to 320
170 to 910

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1470
1020
Melting Onset (Solidus), °C 1430
960
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 53
36
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
31
Density, g/cm3 7.9
8.7
Embodied Carbon, kg CO2/kg material 1.4
2.8
Embodied Energy, MJ/kg 18
45
Embodied Water, L/kg 46
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 94
10 to 480
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 270
130 to 3640
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 10 to 15
16 to 34
Strength to Weight: Bending, points 12 to 16
16 to 27
Thermal Diffusivity, mm2/s 14
10
Thermal Shock Resistance, points 9.2 to 13
18 to 39

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.020 to 0.060
0
Chromium (Cr), % 0
0.010 to 0.12
Copper (Cu), % 0
93.8 to 96.1
Iron (Fe), % 99.335 to 99.71
0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.25 to 0.4
0
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.1
2.7 to 3.4
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
1.2 to 1.9
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.2