MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. C65500 Bronze

EN 1.0303 steel belongs to the iron alloys classification, while C65500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is C65500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 12 to 25
4.0 to 70
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Shear Strength, MPa 220 to 260
260 to 440
Tensile Strength: Ultimate (UTS), MPa 290 to 410
360 to 760
Tensile Strength: Yield (Proof), MPa 200 to 320
120 to 430

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
200
Melting Completion (Liquidus), °C 1470
1030
Melting Onset (Solidus), °C 1430
970
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 53
36
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.9
8.6
Embodied Carbon, kg CO2/kg material 1.4
2.7
Embodied Energy, MJ/kg 18
42
Embodied Water, L/kg 46
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 94
11 to 450
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 270
62 to 790
Stiffness to Weight: Axial, points 13
7.5
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 10 to 15
12 to 24
Strength to Weight: Bending, points 12 to 16
13 to 21
Thermal Diffusivity, mm2/s 14
10
Thermal Shock Resistance, points 9.2 to 13
12 to 26

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.020 to 0.060
0
Copper (Cu), % 0
91.5 to 96.7
Iron (Fe), % 99.335 to 99.71
0 to 0.8
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 0.25 to 0.4
0.5 to 1.3
Nickel (Ni), % 0
0 to 0.6
Phosphorus (P), % 0 to 0.020
0
Silicon (Si), % 0 to 0.1
2.8 to 3.8
Sulfur (S), % 0 to 0.025
0
Zinc (Zn), % 0
0 to 1.5
Residuals, % 0
0 to 0.5