MakeItFrom.com
Menu (ESC)

EN 1.0303 Steel vs. C84100 Brass

EN 1.0303 steel belongs to the iron alloys classification, while C84100 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0303 steel and the bottom bar is C84100 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 84 to 120
65
Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 25
13
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 290 to 410
230
Tensile Strength: Yield (Proof), MPa 200 to 320
81

Thermal Properties

Latent Heat of Fusion, J/g 250
190
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1470
1000
Melting Onset (Solidus), °C 1430
810
Specific Heat Capacity, J/kg-K 470
380
Thermal Conductivity, W/m-K 53
110
Thermal Expansion, µm/m-K 12
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 6.9
23
Electrical Conductivity: Equal Weight (Specific), % IACS 7.9
25

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
29
Density, g/cm3 7.9
8.5
Embodied Carbon, kg CO2/kg material 1.4
2.9
Embodied Energy, MJ/kg 18
48
Embodied Water, L/kg 46
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 94
24
Resilience: Unit (Modulus of Resilience), kJ/m3 110 to 270
30
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 10 to 15
7.4
Strength to Weight: Bending, points 12 to 16
9.7
Thermal Diffusivity, mm2/s 14
33
Thermal Shock Resistance, points 9.2 to 13
7.8

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0 to 0.010
Antimony (Sb), % 0
0 to 0.050
Bismuth (Bi), % 0
0 to 0.090
Carbon (C), % 0.020 to 0.060
0
Copper (Cu), % 0
78 to 85
Iron (Fe), % 99.335 to 99.71
0 to 0.3
Lead (Pb), % 0
0.050 to 0.25
Manganese (Mn), % 0.25 to 0.4
0
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.020
0 to 0.050
Silicon (Si), % 0 to 0.1
0 to 0.010
Sulfur (S), % 0 to 0.025
0
Tin (Sn), % 0
1.5 to 4.5
Zinc (Zn), % 0
12 to 20
Residuals, % 0
0 to 0.5