MakeItFrom.com
Menu (ESC)

EN 1.0348 Steel vs. SAE-AISI 1008 Steel

Both EN 1.0348 steel and SAE-AISI 1008 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0348 steel and the bottom bar is SAE-AISI 1008 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
93 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 28
22 to 33
Fatigue Strength, MPa 160
150 to 220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 250
220 to 230
Tensile Strength: Ultimate (UTS), MPa 380
330 to 370
Tensile Strength: Yield (Proof), MPa 220
190 to 310

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
62
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.9
7.9
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 48
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 91
78 to 91
Resilience: Unit (Modulus of Resilience), kJ/m3 130
92 to 260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 13
12 to 13
Strength to Weight: Bending, points 15
13 to 15
Thermal Diffusivity, mm2/s 13
17
Thermal Shock Resistance, points 12
10 to 12

Alloy Composition

Aluminum (Al), % 0.020 to 0.2
0
Carbon (C), % 0 to 0.13
0 to 0.1
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.5 to 99.98
99.31 to 99.7
Manganese (Mn), % 0 to 0.7
0.3 to 0.5
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.35
0
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0