MakeItFrom.com
Menu (ESC)

EN 1.0402 Steel vs. EN 1.8918 Steel

Both EN 1.0402 steel and EN 1.8918 steel are iron alloys. Both are furnished in the normalized condition. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0402 steel and the bottom bar is EN 1.8918 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 130
190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
19
Fatigue Strength, MPa 170
330
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 290
400
Tensile Strength: Ultimate (UTS), MPa 460
640
Tensile Strength: Yield (Proof), MPa 240
490

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
46
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
2.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 19
24
Embodied Water, L/kg 47
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 16
23
Strength to Weight: Bending, points 17
21
Thermal Diffusivity, mm2/s 13
12
Thermal Shock Resistance, points 15
19

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.050
Carbon (C), % 0.17 to 0.24
0 to 0.2
Chromium (Cr), % 0 to 0.4
0 to 0.3
Copper (Cu), % 0
0 to 0.7
Iron (Fe), % 97.7 to 99.43
95.2 to 98.9
Manganese (Mn), % 0.4 to 0.7
1.1 to 1.7
Molybdenum (Mo), % 0 to 0.1
0 to 0.1
Nickel (Ni), % 0 to 0.4
0 to 0.8
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.025
Phosphorus (P), % 0 to 0.045
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 0.6
Sulfur (S), % 0 to 0.045
0 to 0.0050
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.2