MakeItFrom.com
Menu (ESC)

EN 1.0406 Steel vs. SAE-AISI 1006 Steel

Both EN 1.0406 steel and SAE-AISI 1006 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0406 steel and the bottom bar is SAE-AISI 1006 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
94 to 100
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 23
22 to 33
Fatigue Strength, MPa 170
140 to 210
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 300
230
Tensile Strength: Ultimate (UTS), MPa 470
340 to 370
Tensile Strength: Yield (Proof), MPa 240
180 to 300

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1470
Melting Onset (Solidus), °C 1420
1430
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
53
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
6.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
7.9

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 47
45

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 89
75 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 150
86 to 240
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
12 to 13
Strength to Weight: Bending, points 17
14 to 15
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 15
10 to 11

Alloy Composition

Carbon (C), % 0.22 to 0.29
0 to 0.080
Chromium (Cr), % 0 to 0.4
0
Iron (Fe), % 97.6 to 99.38
99.43 to 99.75
Manganese (Mn), % 0.4 to 0.7
0.25 to 0.4
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.045
0 to 0.040
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.045
0 to 0.050