MakeItFrom.com
Menu (ESC)

EN 1.0411 Steel vs. EN 1.8879 Steel

Both EN 1.0411 steel and EN 1.8879 steel are iron alloys. They have a very high 97% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0411 steel and the bottom bar is EN 1.8879 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 170
250
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 26
16
Fatigue Strength, MPa 200 to 320
460
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 300 to 350
510
Tensile Strength: Ultimate (UTS), MPa 420 to 570
830
Tensile Strength: Yield (Proof), MPa 270 to 480
710

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
420
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
8.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.3

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
3.7
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.9
Embodied Energy, MJ/kg 18
26
Embodied Water, L/kg 47
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 140
120
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 610
1320
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15 to 20
29
Strength to Weight: Bending, points 16 to 20
25
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 13 to 18
24

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.18 to 0.22
0 to 0.2
Chromium (Cr), % 0
0 to 1.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 98.7 to 99.1
91.9 to 100
Manganese (Mn), % 0.7 to 0.9
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0
0 to 2.5
Niobium (Nb), % 0
0 to 0.060
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0 to 0.025
0 to 0.010
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.12
Zirconium (Zr), % 0
0 to 0.15