MakeItFrom.com
Menu (ESC)

EN 1.0411 Steel vs. Grade 33 Titanium

EN 1.0411 steel belongs to the iron alloys classification, while grade 33 titanium belongs to the titanium alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is EN 1.0411 steel and the bottom bar is grade 33 titanium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 26
23
Fatigue Strength, MPa 200 to 320
250
Poisson's Ratio 0.29
0.32
Reduction in Area, % 60 to 74
34
Shear Modulus, GPa 73
41
Shear Strength, MPa 300 to 350
240
Tensile Strength: Ultimate (UTS), MPa 420 to 570
390
Tensile Strength: Yield (Proof), MPa 270 to 480
350

Thermal Properties

Latent Heat of Fusion, J/g 250
420
Maximum Temperature: Mechanical, °C 400
320
Melting Completion (Liquidus), °C 1460
1660
Melting Onset (Solidus), °C 1420
1610
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 52
21
Thermal Expansion, µm/m-K 12
8.7

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
3.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
6.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
55
Density, g/cm3 7.9
4.5
Embodied Carbon, kg CO2/kg material 1.4
33
Embodied Energy, MJ/kg 18
530
Embodied Water, L/kg 47
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 140
86
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 610
590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 15 to 20
24
Strength to Weight: Bending, points 16 to 20
26
Thermal Diffusivity, mm2/s 14
8.7
Thermal Shock Resistance, points 13 to 18
30

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.18 to 0.22
0 to 0.080
Chromium (Cr), % 0
0.1 to 0.2
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 98.7 to 99.1
0 to 0.3
Manganese (Mn), % 0.7 to 0.9
0
Nickel (Ni), % 0
0.35 to 0.55
Nitrogen (N), % 0
0 to 0.030
Oxygen (O), % 0
0 to 0.25
Palladium (Pd), % 0
0.010 to 0.020
Phosphorus (P), % 0 to 0.025
0
Ruthenium (Ru), % 0
0.020 to 0.040
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.025
0
Titanium (Ti), % 0
98.1 to 99.52
Residuals, % 0
0 to 0.4