MakeItFrom.com
Menu (ESC)

EN 1.0411 Steel vs. C62500 Bronze

EN 1.0411 steel belongs to the iron alloys classification, while C62500 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0411 steel and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 12 to 26
1.0
Fatigue Strength, MPa 200 to 320
460
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
42
Shear Strength, MPa 300 to 350
410
Tensile Strength: Ultimate (UTS), MPa 420 to 570
690
Tensile Strength: Yield (Proof), MPa 270 to 480
410

Thermal Properties

Latent Heat of Fusion, J/g 250
230
Maximum Temperature: Mechanical, °C 400
230
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1050
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 52
47
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
10
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
11

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
26
Density, g/cm3 7.9
8.1
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
55
Embodied Water, L/kg 47
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 43 to 140
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 190 to 610
750
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 15 to 20
24
Strength to Weight: Bending, points 16 to 20
22
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 13 to 18
24

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
12.5 to 13.5
Carbon (C), % 0.18 to 0.22
0
Copper (Cu), % 0
78.5 to 84
Iron (Fe), % 98.7 to 99.1
3.5 to 5.5
Manganese (Mn), % 0.7 to 0.9
0 to 2.0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.1
0
Sulfur (S), % 0 to 0.025
0
Residuals, % 0
0 to 0.5