MakeItFrom.com
Menu (ESC)

EN 1.0420 Cast Steel vs. C90200 Bronze

EN 1.0420 cast steel belongs to the iron alloys classification, while C90200 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is EN 1.0420 cast steel and the bottom bar is C90200 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 28
30
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
41
Tensile Strength: Ultimate (UTS), MPa 460
260
Tensile Strength: Yield (Proof), MPa 220
110

Thermal Properties

Latent Heat of Fusion, J/g 250
200
Maximum Temperature: Mechanical, °C 400
180
Melting Completion (Liquidus), °C 1470
1050
Melting Onset (Solidus), °C 1430
880
Specific Heat Capacity, J/kg-K 470
370
Thermal Conductivity, W/m-K 53
62
Thermal Expansion, µm/m-K 12
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
13
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
13

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
34
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 1.4
3.3
Embodied Energy, MJ/kg 18
53
Embodied Water, L/kg 45
370

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
63
Resilience: Unit (Modulus of Resilience), kJ/m3 130
55
Stiffness to Weight: Axial, points 13
7.0
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 16
8.3
Strength to Weight: Bending, points 17
10
Thermal Diffusivity, mm2/s 14
19
Thermal Shock Resistance, points 14
9.5

Alloy Composition

Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.2
Copper (Cu), % 0
91 to 94
Iron (Fe), % 99.935 to 100
0 to 0.2
Lead (Pb), % 0
0 to 0.3
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0 to 0.035
0 to 0.050
Silicon (Si), % 0
0 to 0.0050
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
6.0 to 8.0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0
0 to 0.6