MakeItFrom.com
Menu (ESC)

EN 1.0425 Steel vs. SAE-AISI 1037 Steel

Both EN 1.0425 steel and SAE-AISI 1037 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0425 steel and the bottom bar is SAE-AISI 1037 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
160 to 190
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
14 to 20
Fatigue Strength, MPa 190
220 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 300
360 to 390
Tensile Strength: Ultimate (UTS), MPa 470
580 to 640
Tensile Strength: Yield (Proof), MPa 260
320 to 540

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 50
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 20
18
Embodied Water, L/kg 48
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 98
83 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 180
270 to 780
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
20 to 23
Strength to Weight: Bending, points 17
20 to 21
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 15
18 to 20

Alloy Composition

Aluminum (Al), % 0.020 to 0.024
0
Carbon (C), % 0 to 0.2
0.32 to 0.38
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.9 to 99.18
98.5 to 99
Manganese (Mn), % 0.8 to 1.4
0.7 to 1.0
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.020
0
Nitrogen (N), % 0 to 0.012
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.020
0