MakeItFrom.com
Menu (ESC)

EN 1.0434 Steel vs. AWS E100C-K3

Both EN 1.0434 steel and AWS E100C-K3 are iron alloys. They have a very high 96% of their average alloy composition in common. There are 27 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0434 steel and the bottom bar is AWS E100C-K3.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 12 to 28
18
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Tensile Strength: Ultimate (UTS), MPa 390 to 540
770
Tensile Strength: Yield (Proof), MPa 250 to 450
700

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
48
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.0
7.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.0
9.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
3.4
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 18
23
Embodied Water, L/kg 46
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 39 to 140
130
Resilience: Unit (Modulus of Resilience), kJ/m3 170 to 540
1290
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 14 to 19
27
Strength to Weight: Bending, points 15 to 19
24
Thermal Diffusivity, mm2/s 14
13
Thermal Shock Resistance, points 12 to 17
23

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0.15 to 0.19
0 to 0.15
Chromium (Cr), % 0
0 to 0.15
Copper (Cu), % 0
0 to 0.35
Iron (Fe), % 98.8 to 99.18
92.6 to 98.5
Manganese (Mn), % 0.65 to 0.85
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0
0.5 to 2.5
Phosphorus (P), % 0 to 0.025
0 to 0.025
Silicon (Si), % 0 to 0.1
0 to 0.8
Sulfur (S), % 0 to 0.025
0 to 0.025
Vanadium (V), % 0
0 to 0.030
Residuals, % 0
0 to 0.5