MakeItFrom.com
Menu (ESC)

EN 1.0436 Steel vs. SAE-AISI 1021 Steel

Both EN 1.0436 steel and SAE-AISI 1021 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0436 steel and the bottom bar is SAE-AISI 1021 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
130 to 150
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24
17 to 27
Fatigue Strength, MPa 230
190 to 300
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 360
310 to 320
Tensile Strength: Ultimate (UTS), MPa 560
480 to 530
Tensile Strength: Yield (Proof), MPa 320
260 to 450

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
52
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.4
Embodied Energy, MJ/kg 19
18
Embodied Water, L/kg 47
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
84 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 270
180 to 530
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
17 to 19
Strength to Weight: Bending, points 19
17 to 18
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 18
15 to 17

Alloy Composition

Carbon (C), % 0.15 to 0.2
0.18 to 0.23
Iron (Fe), % 97.8 to 99
98.8 to 99.22
Manganese (Mn), % 0.9 to 1.6
0.6 to 0.9
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.015
0 to 0.050