MakeItFrom.com
Menu (ESC)

EN 1.0446 Cast Steel vs. 2095 Aluminum

EN 1.0446 cast steel belongs to the iron alloys classification, while 2095 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0446 cast steel and the bottom bar is 2095 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
70
Elongation at Break, % 25
8.5
Fatigue Strength, MPa 200
200
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Tensile Strength: Ultimate (UTS), MPa 530
700
Tensile Strength: Yield (Proof), MPa 270
610

Thermal Properties

Latent Heat of Fusion, J/g 250
390
Maximum Temperature: Mechanical, °C 400
210
Melting Completion (Liquidus), °C 1470
660
Melting Onset (Solidus), °C 1430
540
Specific Heat Capacity, J/kg-K 470
910
Thermal Conductivity, W/m-K 53
130
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
35
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
110

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
31
Density, g/cm3 7.9
3.0
Embodied Carbon, kg CO2/kg material 1.4
8.6
Embodied Energy, MJ/kg 18
160
Embodied Water, L/kg 45
1470

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
57
Resilience: Unit (Modulus of Resilience), kJ/m3 190
2640
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
46
Strength to Weight: Axial, points 19
65
Strength to Weight: Bending, points 18
59
Thermal Diffusivity, mm2/s 14
49
Thermal Shock Resistance, points 17
31

Alloy Composition

Aluminum (Al), % 0
91.3 to 94.9
Copper (Cu), % 0
3.9 to 4.6
Iron (Fe), % 99.935 to 100
0 to 0.15
Lithium (Li), % 0
0.7 to 1.5
Magnesium (Mg), % 0
0.25 to 0.8
Manganese (Mn), % 0
0 to 0.25
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0
0 to 0.12
Silver (Ag), % 0
0.25 to 0.6
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.25
Zirconium (Zr), % 0
0.040 to 0.18
Residuals, % 0
0 to 0.15