MakeItFrom.com
Menu (ESC)

EN 1.0446 Cast Steel vs. EN AC-46200 Aluminum

EN 1.0446 cast steel belongs to the iron alloys classification, while EN AC-46200 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0446 cast steel and the bottom bar is EN AC-46200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
73
Elongation at Break, % 25
1.1
Fatigue Strength, MPa 200
87
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
27
Tensile Strength: Ultimate (UTS), MPa 530
210
Tensile Strength: Yield (Proof), MPa 270
130

Thermal Properties

Latent Heat of Fusion, J/g 250
510
Maximum Temperature: Mechanical, °C 400
170
Melting Completion (Liquidus), °C 1470
620
Melting Onset (Solidus), °C 1430
540
Specific Heat Capacity, J/kg-K 470
880
Thermal Conductivity, W/m-K 53
110
Thermal Expansion, µm/m-K 12
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.8
28
Electrical Conductivity: Equal Weight (Specific), % IACS 8.9
88

Otherwise Unclassified Properties

Base Metal Price, % relative 1.7
10
Density, g/cm3 7.9
2.8
Embodied Carbon, kg CO2/kg material 1.4
7.7
Embodied Energy, MJ/kg 18
140
Embodied Water, L/kg 45
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
2.0
Resilience: Unit (Modulus of Resilience), kJ/m3 190
110
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 19
21
Strength to Weight: Bending, points 18
28
Thermal Diffusivity, mm2/s 14
44
Thermal Shock Resistance, points 17
9.5

Alloy Composition

Aluminum (Al), % 0
82.6 to 90.3
Copper (Cu), % 0
2.0 to 3.5
Iron (Fe), % 99.935 to 100
0 to 0.8
Lead (Pb), % 0
0 to 0.25
Magnesium (Mg), % 0
0.050 to 0.55
Manganese (Mn), % 0
0.15 to 0.65
Nickel (Ni), % 0
0 to 0.35
Phosphorus (P), % 0 to 0.035
0
Silicon (Si), % 0
7.5 to 9.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0
0 to 0.25
Zinc (Zn), % 0
0 to 1.2
Residuals, % 0
0 to 0.25