MakeItFrom.com
Menu (ESC)

EN 1.0449 Cast Steel vs. AISI 316Ti Stainless Steel

Both EN 1.0449 cast steel and AISI 316Ti stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.0449 cast steel and the bottom bar is AISI 316Ti stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 28
41
Fatigue Strength, MPa 170
200
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
82
Tensile Strength: Ultimate (UTS), MPa 460
580
Tensile Strength: Yield (Proof), MPa 220
230

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
940
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1380
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 52
15
Thermal Expansion, µm/m-K 12
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.1
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
19
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
4.0
Embodied Energy, MJ/kg 18
55
Embodied Water, L/kg 46
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
190
Resilience: Unit (Modulus of Resilience), kJ/m3 130
140
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 16
20
Strength to Weight: Bending, points 17
20
Thermal Diffusivity, mm2/s 14
4.0
Thermal Shock Resistance, points 14
13

Alloy Composition

Carbon (C), % 0 to 0.18
0 to 0.080
Chromium (Cr), % 0
16 to 18
Iron (Fe), % 98 to 100
61.3 to 72
Manganese (Mn), % 0 to 1.2
0 to 2.0
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
10 to 14
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.030
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 0.75
Sulfur (S), % 0 to 0.025
0 to 0.030
Titanium (Ti), % 0
0 to 0.7