MakeItFrom.com
Menu (ESC)

EN 1.0452 Steel vs. EN 1.3963 Alloy

Both EN 1.0452 steel and EN 1.3963 alloy are iron alloys. Both are furnished in the quenched and tempered condition. They have 63% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is EN 1.0452 steel and the bottom bar is EN 1.3963 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
29
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
72
Shear Strength, MPa 270
290
Tensile Strength: Ultimate (UTS), MPa 430
440
Tensile Strength: Yield (Proof), MPa 290
310

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Melting Completion (Liquidus), °C 1460
1430
Melting Onset (Solidus), °C 1420
1390
Specific Heat Capacity, J/kg-K 470
460
Thermal Expansion, µm/m-K 12
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
25
Density, g/cm3 7.9
8.2
Embodied Carbon, kg CO2/kg material 1.5
4.8
Embodied Energy, MJ/kg 19
66
Embodied Water, L/kg 48
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 94
110
Resilience: Unit (Modulus of Resilience), kJ/m3 220
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 15
15
Strength to Weight: Bending, points 16
16
Thermal Shock Resistance, points 13
110

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.17
0 to 0.050
Chromium (Cr), % 0 to 0.3
0 to 0.25
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 97.1 to 99.58
60.5 to 64.9
Manganese (Mn), % 0.4 to 1.2
0 to 0.5
Molybdenum (Mo), % 0 to 0.080
0 to 1.0
Nickel (Ni), % 0 to 0.3
35 to 37
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.030
Silicon (Si), % 0 to 0.35
0 to 0.5
Sulfur (S), % 0 to 0.010
0.1 to 0.2
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0