MakeItFrom.com
Menu (ESC)

EN 1.0453 Steel vs. 4006 Aluminum

EN 1.0453 steel belongs to the iron alloys classification, while 4006 aluminum belongs to the aluminum alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is EN 1.0453 steel and the bottom bar is 4006 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
28 to 45
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 26
3.4 to 24
Fatigue Strength, MPa 220
35 to 110
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 73
26
Shear Strength, MPa 320
70 to 91
Tensile Strength: Ultimate (UTS), MPa 490
110 to 160
Tensile Strength: Yield (Proof), MPa 300
62 to 140

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
160
Melting Completion (Liquidus), °C 1460
640
Melting Onset (Solidus), °C 1420
620
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 49
220
Thermal Expansion, µm/m-K 12
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
56
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
180

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
9.0
Density, g/cm3 7.8
2.7
Embodied Carbon, kg CO2/kg material 1.5
8.1
Embodied Energy, MJ/kg 20
150
Embodied Water, L/kg 49
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
5.1 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 230
28 to 130
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 17
11 to 16
Strength to Weight: Bending, points 18
19 to 24
Thermal Diffusivity, mm2/s 13
89
Thermal Shock Resistance, points 15
4.9 to 7.0

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
97.4 to 98.7
Carbon (C), % 0 to 0.2
0
Chromium (Cr), % 0 to 0.3
0 to 0.2
Copper (Cu), % 0 to 0.3
0 to 0.1
Iron (Fe), % 96.9 to 99.38
0.5 to 0.8
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0.6 to 1.4
0 to 0.050
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0
Silicon (Si), % 0 to 0.4
0.8 to 1.2
Sulfur (S), % 0 to 0.010
0
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0
Zinc (Zn), % 0
0 to 0.050
Residuals, % 0
0 to 0.15