MakeItFrom.com
Menu (ESC)

EN 1.0453 Steel vs. SAE-AISI 1035 Steel

Both EN 1.0453 steel and SAE-AISI 1035 steel are iron alloys. Their average alloy composition is basically identical. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0453 steel and the bottom bar is SAE-AISI 1035 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 140
160 to 180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 26
13 to 21
Fatigue Strength, MPa 220
210 to 340
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 320
360 to 370
Tensile Strength: Ultimate (UTS), MPa 490
570 to 620
Tensile Strength: Yield (Proof), MPa 300
300 to 530

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
51
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.1
1.8
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 20
18
Embodied Water, L/kg 49
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
79 to 99
Resilience: Unit (Modulus of Resilience), kJ/m3 230
250 to 740
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 17
20 to 22
Strength to Weight: Bending, points 18
19 to 21
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 15
18 to 20

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0.32 to 0.38
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.9 to 99.38
98.6 to 99.08
Manganese (Mn), % 0.6 to 1.4
0.6 to 0.9
Molybdenum (Mo), % 0 to 0.080
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.010
0
Phosphorus (P), % 0 to 0.025
0 to 0.040
Silicon (Si), % 0 to 0.4
0
Sulfur (S), % 0 to 0.010
0 to 0.050
Titanium (Ti), % 0 to 0.040
0
Vanadium (V), % 0 to 0.020
0