MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. AISI 403 Stainless Steel

Both EN 1.0456 steel and AISI 403 stainless steel are iron alloys. They have 88% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is AISI 403 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
190 to 240
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24 to 26
16 to 25
Fatigue Strength, MPa 210 to 220
200 to 340
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 270 to 280
340 to 480
Tensile Strength: Ultimate (UTS), MPa 420 to 450
530 to 780
Tensile Strength: Yield (Proof), MPa 290 to 300
280 to 570

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
740
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
28
Thermal Expansion, µm/m-K 12
9.9

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
6.5
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
1.9
Embodied Energy, MJ/kg 20
27
Embodied Water, L/kg 49
99

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
110 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
210 to 840
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15 to 16
19 to 28
Strength to Weight: Bending, points 16 to 17
19 to 24
Thermal Diffusivity, mm2/s 13
7.6
Thermal Shock Resistance, points 13 to 14
20 to 29

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0 to 0.15
Chromium (Cr), % 0 to 0.3
11.5 to 13
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 96.7 to 99.48
84.7 to 88.5
Manganese (Mn), % 0.5 to 1.4
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.3
0 to 0.6
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0 to 0.040
Silicon (Si), % 0 to 0.4
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0