MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. ASTM A182 Grade F6b

Both EN 1.0456 steel and ASTM A182 grade F6b are iron alloys. They have 85% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
260
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24 to 26
18
Fatigue Strength, MPa 210 to 220
440
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 73
76
Shear Strength, MPa 270 to 280
530
Tensile Strength: Ultimate (UTS), MPa 420 to 450
850
Tensile Strength: Yield (Proof), MPa 290 to 300
710

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
750
Melting Completion (Liquidus), °C 1460
1450
Melting Onset (Solidus), °C 1420
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 48
25
Thermal Expansion, µm/m-K 12
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
8.0
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.5
2.2
Embodied Energy, MJ/kg 20
30
Embodied Water, L/kg 49
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
140
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
1280
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 15 to 16
30
Strength to Weight: Bending, points 16 to 17
26
Thermal Diffusivity, mm2/s 13
6.7
Thermal Shock Resistance, points 13 to 14
31

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0
Carbon (C), % 0 to 0.2
0 to 0.15
Chromium (Cr), % 0 to 0.3
11.5 to 13.5
Copper (Cu), % 0 to 0.35
0 to 0.5
Iron (Fe), % 96.7 to 99.48
81.2 to 87.1
Manganese (Mn), % 0.5 to 1.4
0 to 1.0
Molybdenum (Mo), % 0 to 0.1
0.4 to 0.6
Nickel (Ni), % 0 to 0.3
1.0 to 2.0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0 to 0.020
Silicon (Si), % 0 to 0.4
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.020
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0