MakeItFrom.com
Menu (ESC)

EN 1.0456 Steel vs. EN 1.0234 Steel

Both EN 1.0456 steel and EN 1.0234 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is EN 1.0456 steel and the bottom bar is EN 1.0234 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 120 to 130
100 to 140
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 24 to 26
12 to 29
Fatigue Strength, MPa 210 to 220
170 to 270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 73
73
Shear Strength, MPa 270 to 280
260 to 300
Tensile Strength: Ultimate (UTS), MPa 420 to 450
350 to 480
Tensile Strength: Yield (Proof), MPa 290 to 300
220 to 410

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1420
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 48
53
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.0

Otherwise Unclassified Properties

Base Metal Price, % relative 2.2
1.8
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.5
1.4
Embodied Energy, MJ/kg 20
18
Embodied Water, L/kg 49
46

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 93 to 99
36 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 220 to 230
130 to 440
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 15 to 16
12 to 17
Strength to Weight: Bending, points 16 to 17
14 to 17
Thermal Diffusivity, mm2/s 13
14
Thermal Shock Resistance, points 13 to 14
11 to 15

Alloy Composition

Aluminum (Al), % 0.020 to 0.060
0.020 to 0.060
Carbon (C), % 0 to 0.2
0.13 to 0.17
Chromium (Cr), % 0 to 0.3
0
Copper (Cu), % 0 to 0.35
0
Iron (Fe), % 96.7 to 99.48
99.02 to 99.5
Manganese (Mn), % 0.5 to 1.4
0.35 to 0.6
Molybdenum (Mo), % 0 to 0.1
0
Nickel (Ni), % 0 to 0.3
0
Niobium (Nb), % 0 to 0.050
0
Nitrogen (N), % 0 to 0.015
0
Phosphorus (P), % 0 to 0.035
0 to 0.025
Silicon (Si), % 0 to 0.4
0 to 0.1
Sulfur (S), % 0 to 0.030
0 to 0.025
Titanium (Ti), % 0 to 0.030
0
Vanadium (V), % 0 to 0.050
0

Comparable Variants